Europe Artificial Intelligence (AI) in Healthcare Market

Europe Artificial Intelligence (AI) in Healthcare Market

1

INTRODUCTION

 

 

 

25

2

EXECUTIVE SUMMARY

 

 

 

 

3

PREMIUM INSIGHTS

 

 

 

 

4

MARKET OVERVIEW

 

 

 

 

 

4.1

INTRODUCTION

 

 

 

 

4.2

MARKET DYNAMICS

 

 

 

 

 

4.2.1

DRIVERS

 

 

 

 

 

4.2.1.1

EUROPE AI ACT ACCELERATING DEMAND FOR COMPLIANT RADIOLOGY SOLUTIONS

 

 

 

 

4.2.1.2

EUROPEAN HEALTH DATA SPACE (EHDS) BOOSTING ACCESS TO STRUCTURED CROSS-BORDER IMAGING DATA

 

 

 

 

4.2.1.3

EUROPE FUNDING PROGRAMS SUPPORTING HEALTHCARE AI SCALE-UP

 

 

 

 

4.2.1.4

NATIONAL EHR/IMAGING DIGITIZATION PROGRAMS DRIVING PILOT DEPLOYMENTS IN PUBLIC SYSTEMS

 

 

 

 

4.2.1.5

OPERATIONAL PRESSURE FROM IMAGING BACKLOGS AND RADIOLOGIST CAPACITY GAPS

 

 

 

4.2.2

RESTRAINTS

 

 

 

 

 

4.2.2.1

COMPLEX EUROPEAN REGULATIONS INCREASING AI CERTIFICATION BURDENS

 

 

 

 

4.2.2.2

FRAGMENTED NATIONAL INTERPRETATIONS OF GDPR AND CONSENT LIMITING POOLED TRAINING DATASETS

 

 

 

4.2.3

OPPORTUNITIES

 

 

 

 

 

4.2.3.1

EHDS-ENABLED PAN-EU VALIDATION STUDIES AND REGULATORY EVIDENCE GENERATION

 

 

 

 

4.2.3.2

PROCUREMENT SCHEMES FAVORING COMPLIANT AI VENDORS

 

 

 

 

4.2.3.3

RISING DEMAND FOR PRIVACY-PRESERVING AI TECHNOLOGIES

 

 

 

 

4.2.3.4

CROSS-BORDER IMAGING COLLABORATIONS EXPANDING TRAINING DATASETS

 

 

 

4.2.4

CHALLENGES

 

 

 

 

 

4.2.4.1

REGULATORY/LEGAL UNCERTAINTY ABOUT LIABILITY AND CLINICAL ACCOUNTABILITY ACROSS MEMBER STATES

 

 

 

 

4.2.4.2

SLOW PUBLIC PROCUREMENT CYCLES AND LIMITED SCALE-UP CAPITAL FOR EUROPEAN MED-AI STARTUPS

 

 

4.3

UNMET NEEDS & WHITE SPACES

 

 

 

 

4.4

INTERCONNECTED MARKETS & CROSS-SECTOR OPPORTUNITIES

 

 

 

 

4.5

STRATEGIC MOVES BY TIER-1/2/3 PLAYERS

 

 

 

5

INDUSTRY TRENDS

 

 

 

 

 

5.1

PORTER’S FIVE FORCES ANALYSIS

 

 

 

 

5.2

MACROECONOMIC INDICATORS

 

 

 

 

 

5.2.1

INTRODUCTION

 

 

 

 

5.2.2

GDP TRENDS & FORECAST

 

 

 

 

5.2.3

TRENDS IN HEALTHCARE IT INDUSTRY

 

 

 

5.3

VALUE CHAIN ANALYSIS

 

 

 

 

 

5.4

ECOSYSTEM ANALYSIS

 

 

 

 

 

5.5

PRICING ANALYSIS

 

 

 

 

 

 

5.5.1

INDICATIVE PRICE FOR EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE SOLUTIONS, BY KEY PLAYER (2024)

 

 

 

 

5.5.2

INDICATIVE PRICE FOR EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE SOLUTIONS, BY COUNTRY (2024)

 

 

 

5.6

KEY CONFERENCES & EVENTS, 2026–2027

 

 

 

 

5.7

TRENDS/DISRUPTIONS IMPACTING CUSTOMERS’ BUSINESSES

 

 

 

 

5.8

INVESTMENT & FUNDING SCENARIO

 

 

 

 

 

5.9

CASE STUDY ANALYSIS

 

 

 

6

TECHNOLOGICAL ADVANCEMENTS, AI-DRIVEN IMPACT, PATENTS, INNOVATIONS, AND FUTURE APPLICATIONS

 

 

 

 

 

6.1

KEY EMERGING TECHNOLOGIES

 

 

 

 

6.2

COMPLEMENTARY TECHNOLOGIES

 

 

 

 

6.3

TECHNOLOGY/PRODUCT ROADMAP

 

 

 

 

6.4

PATENT ANALYSIS

 

 

 

 

 

6.5

FUTURE APPLICATIONS

 

 

 

7

REGULATORY LANDSCAPE

 

 

 

 

 

7.1

REGULATIONS & COMPLIANCE

 

 

 

 

 

7.1.1

REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS

 

 

 

 

7.1.2

INDUSTRY STANDARDS

 

 

8

CUSTOMER LANDSCAPE & BUYER BEHAVIOR

 

 

 

 

 

8.1

DECISION-MAKING PROCESS

 

 

 

 

8.2

BUYER STAKEHOLDERS & BUYING EVALUATION CRITERIA

 

 

 

 

8.3

ADOPTION BARRIERS & INTERNAL CHALLENGES

 

 

 

 

8.4

UNMET NEEDS FROM VARIOUS END-USE INDUSTRIES

 

 

 

9

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY OFFERING (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

9.1

INTRODUCTION

 

 

 

 

9.2

INTEGRATED SOLUTIONS

 

 

 

 

9.3

NICHE/POINT SOLUTIONS

 

 

 

 

9.4

AI TECHNOLOGY

 

 

 

10

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY FUNCTION (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

10.1

INTRODUCTION

 

 

 

 

10.2

DIAGNOSIS & EARLY DETECTION

 

 

 

 

 

10.2.1

PRESCREENING

 

 

 

 

 

10.2.2.1

BY TECHNOLOGY

 

 

 

 

10.2.2.2

BY APPLICATION

 

 

 

10.2.3

DIAGNOSTIC IMAGING

 

 

 

 

 

10.2.3.1

BY APPLICATION

 

 

 

 

10.2.3.2

BY MODALITY

 

 

 

10.2.4

RISK ASSESSMENT & PATIENT STRATIFICATION

 

 

 

 

10.2.5

DRUG ALLERGY ALERTING

 

 

 

 

10.2.6

OTHERS

 

 

 

10.3

TREATMENT PLANNING & PERSONALIZATION

 

 

 

 

 

10.3.1

PERSONALIZED TREATMENT PLANNING

 

 

 

 

 

10.3.1.1

PRECISION MEDICINE & GENOMIC ANALYSIS

 

 

 

 

10.3.1.2

PREDICTIVE MODELS FOR TREATMENT RESPONSE

 

 

 

 

10.3.1.3

TREATMENT RECOMMENDATION SYSTEMS

 

 

 

10.3.2

PHARMACOLOGICAL THERAPY

 

 

 

 

 

10.3.2.1

DRUG RESPONSE PREDICTION

 

 

 

 

10.3.2.2

DOSING & ADMINISTRATION

 

 

 

 

10.3.2.3

OTHER PHARMACOLOGICAL THERAPIES

 

 

 

10.3.3

SURGICAL THERAPY

 

 

 

 

 

10.3.3.1

PREOPERATIVE IMAGING & 3D MODELING

 

 

 

 

10.3.3.2

INTRAOPERATIVE GUIDANCE & ROBOTICS

 

 

 

 

10.3.3.3

POSTOPERATIVE ANALYSIS & RECOVERY

 

 

 

10.3.4

RADIATION THERAPY

 

 

 

 

 

10.3.4.1

MOTION SYNCHRONIZATION & AUTO CONTOURING

 

 

 

 

10.3.4.2

REAL-TIME ADAPTIVE TREATMENT DELIVERY

 

 

 

 

10.3.4.3

RESPONSE ASSESSMENT & QUALITY ASSURANCE

 

 

 

 

10.3.4.4

OTHER RADIATION THERAPIES

 

 

 

10.3.5

BEHAVIORAL & PSCYCHOTHERAPY THERAPY

 

 

 

 

 

10.3.5.1

VIRTUAL COUNSELING & CHATBOTS

 

 

 

 

10.3.5.2

PROGRESS MONITORING & FEEDBACK

 

 

 

 

10.3.5.3

FOLLOW-UP & LONG-TERM SUPPORT

 

 

 

10.3.6

IMMUNOTHERAPY

 

 

 

 

 

10.3.6.1

REAL-TIME PATIENT DATA MONITORING (IMAGING SCANS, BLOOD BIOMARKERS, VITALS)

 

 

 

 

10.3.6.2

RESPONSE & SIDE-EFFECT PREDICTION

 

 

 

 

10.3.6.3

RELAPSE PREDICTION & LONG-TERM MANAGEMENT

 

 

 

10.3.7

OTHERS

 

 

 

10.4

PATIENT ENGAGEMENT & REMOTE MONITORING

 

 

 

 

 

10.4.1

SYMPTOM MANAGEMENT & VIRTUAL ASSISTANCE

 

 

 

 

10.4.2

TELEHEALTH & REMOTE PATIENT MONITORING

 

 

 

 

10.4.3

HEALTHCARE ASSISTANCE ROBOTS

 

 

 

 

10.4.4

MEDICATION REMINDERS

 

 

 

 

10.4.5

PATIENT EDUCATION & EMPOWERMENT

 

 

 

 

10.4.6

OTHER PATIENT ENGAGEMENT & REMOTE MONITORING FUNCTIONS

 

 

 

10.5

POST-TREATMENT SURVEILLANCE & SURVIVORSHIP CARE

 

 

 

 

 

10.5.1

RECURRENCE MONITORING

 

 

 

 

10.5.2

LONG-TERM OUTCOME PREDICTION

 

 

 

 

10.5.3

MENTAL HEALTH & SUPPORT SYSTEMS

 

 

 

10.6

PHARMACY MANAGEMENT

 

 

 

 

 

10.6.1

EPRESCRIBING

 

 

 

 

10.6.2

MEDICATION MANAGEMENT

 

 

 

 

10.6.3

PHARMACY AUDIT & ANALYSIS

 

 

 

 

10.6.4

OTHER PHARMACY MANAGEMENT FUNCTIONS

 

 

 

10.7

DATA MANAGEMENT & ANALYTICS

 

 

 

 

10.8

ADMINISTRATIVE

 

 

 

 

 

10.8.1

PATIENT REGISTRATION & SCHEDULING

 

 

 

 

10.8.2

PATIENT ELIGIBILITY & AUTHORIZATION

 

 

 

 

10.8.3

BILLING & CLAIMS MANAGEMENT

 

 

 

 

10.8.4

WORKFORCE MANAGEMENT

 

 

 

 

10.8.5

SUPPLY CHAIN & INVENTORY MANAGEMENT

 

 

 

 

10.8.6

COMPLIANCE & DOCUMENTATION

 

 

 

 

10.8.7

HEALTHCARE WORKFLOW MANAGEMENT

 

 

 

 

10.8.8

ASSET MANAGEMENT

 

 

 

 

10.8.9

CUSTOMER RELATIONSHIP MANAGEMENT

 

 

 

 

10.8.10

FRAUD DETECTION & RISK MANAGEMENT

 

 

 

 

10.8.11

CYBERSECURITY

 

 

 

 

10.8.12

OTHER ADMINISTRATIVE FUNCTIONS

 

 

11

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY APPLICATION (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

11.1

INTRODUCTION

 

 

 

 

11.2

CLINICAL APPLICATIONS

 

 

 

 

11.3

NON-CLINICAL APPLICATIONS

 

 

 

12

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY DEPLOYMENT (USD MILLION) MODEL (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

12.1

INTRODUCTION

 

 

 

 

12.2

ON-PREMISES MODEL

 

 

 

 

12.3

CLOUD-BASED MODEL

 

 

 

 

12.4

HYBRID MODEL

 

 

 

13

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY TOOL (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

13.1

INTRODUCTION

 

 

 

 

13.2

MACHINE LEARNING

 

 

 

 

 

13.2.1

DEEP LEARNING

 

 

 

 

 

13.2.1.1

CONVOLUTIONAL NEURAL NETWORKS (CNN)

 

 

 

 

13.2.1.2

RECURRENT NEURAL NETWORKS (RNN)

 

 

 

 

13.2.1.3

GENERATIVE ADVERSARIAL NETWORKS (GAN)

 

 

 

 

13.2.1.4

GRAPH NEURAL NETWORKS (GNN)

 

 

 

 

13.2.1.5

OTHER DEEP LEARNING TOOLS

 

 

 

13.2.2

SUPERVISED LEARNING

 

 

 

 

13.2.3

REINFORCEMENT LEARNING

 

 

 

 

13.2.4

UNSUPERVISED LEARNING

 

 

 

 

13.2.5

OTHER MACHINE LEARNING TOOLS

 

 

 

13.3

NATURAL LANGUAGE PROCESSING

 

 

 

 

 

13.3.1

SENTIMENT ANALYSIS

 

 

 

 

13.3.2

PATTERN & IMAGE RECOGNITION

 

 

 

 

13.3.3

AUTOCODING

 

 

 

 

13.3.4

CLASSIFICATION & CATEGORIZATION

 

 

 

 

13.3.5

TEXT ANALYTICS

 

 

 

 

13.3.6

SPEECH RECOGNITION

 

 

 

13.4

CONTEXT-AWARE COMPUTING

 

 

 

 

 

13.4.1

DEVICE CONTEXT

 

 

 

 

13.4.2

USER CONTEXT

 

 

 

 

13.4.3

PHYSICAL CONTEXT

 

 

 

13.5

GENERATIVE AI

 

 

 

 

13.6

COMPUTER VISION

 

 

 

 

13.7

IMAGE ANALYSIS

 

 

 

14

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY END USER (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

14.1

INTRODUCTION

 

 

 

 

14.2

HEALTHCARE PROVIDERS

 

 

 

 

 

14.2.1

HOSPITALS & CLINICS

 

 

 

 

14.2.2

AMBULATORY CARE CENTERS

 

 

 

 

14.2.3

HOME HEALTHCARE AGENCIES & ASSISTED LIVING FACILITIES

 

 

 

 

14.2.4

DIAGNOSTIC & IMAGING CENTERS

 

 

 

 

14.2.5

PHARMACIES

 

 

 

 

14.2.6

OTHERS HEALTHCARE PROVIDERS

 

 

 

14.3

HEALTHCARE PAYERS

 

 

 

 

 

14.3.1

PUBLIC PAYERS

 

 

 

 

14.3.2

PRIVATE PAYERS

 

 

 

14.4

PATIENTS

 

 

 

 

14.5

OTHER END USERS

 

 

 

15

EUROPE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, BY COUNTRY (USD MILLION) (MARKET SIZE & FORECAST TO 2030)

 

 

 

 

 

15.1

INTRODUCTION

 

 

 

 

15.7

REST OF EUROPE

 

 

 

16

COMPETITIVE LANDSCAPE

 

 

 

 

 

16.1

STRATEGIC ASSESSMENT OF LEADING PLAYERS, MARKET SHARE, REVENUE ANALYSIS, COMPANY POSITIONING, AND COMPETITIVE BENCHMARKS INFLUENCING MARKET POTENTIAL

 

 

 

 

 

16.2

OVERVIEW

 

 

 

 

16.3

KEY PLAYER COMPETITIVE STRATEGIES/RIGHT TO WIN

 

 

 

 

16.4

REVENUE ANALYSIS, 2020–2024

 

 

 

 

 

16.5

MARKET SHARE ANALYSIS,

 

 

 

 

 

16.6

BRAND/SOFTWARE COMPARISON

 

 

 

 

16.7

COMPANY EVALUATION MATRIX: KEY PLAYERS,

 

 

 

 

 

 

16.7.2

EMERGING LEADERS

 

 

 

 

16.7.3

PERVASIVE PLAYERS

 

 

 

 

16.7.4

PARTICIPANTS

 

 

 

 

16.7.5

COMPANY FOOTPRINT: KEY PLAYERS,

 

 

 

 

 

16.7.5.1

COMPANY FOOTPRINT

 

 

 

 

16.7.5.2

OFFERING FOOTPRINT

 

 

 

 

16.7.5.3

FUNCTION FOOTPRINT

 

 

 

 

16.7.5.4

APPLICATION FOOTPRINT

 

 

 

 

16.7.5.5

DEPLOYMENT FOOTPRINT

 

 

 

 

16.7.5.6

TOOL FOOTPRINT

 

 

 

 

16.7.5.7

END-USER FOOTPRINT

 

 

16.8

COMPANY EVAULATION MATRIX: STARTUPS/SMES,

 

 

 

 

 

 

16.8.1

PROGRESSIVE COMPANIES

 

 

 

 

16.8.2

DYNAMIC COMPANIES

 

 

 

 

16.8.3

RESPONSIVE COMPANIES

 

 

 

 

16.8.4

STARTING BLOCKS

 

 

 

 

16.8.5

COMPETITIVE BENCHMARKING: STARTUPS/SMES,

 

 

 

 

 

16.8.5.1

DETAILED LIST OF KEY STARTUPS/SMES

 

 

 

 

16.8.5.2

COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES

 

 

16.9

COMPANY VALUATION & FINANCIAL METRICS

 

 

 

 

16.10

COMPETITIVE SCENARIO

 

 

 

 

 

16.10.1

PRODUCT LAUNCHES & UPGRADES

 

 

 

 

16.10.2

DEALS

 

 

 

 

16.10.3

EXPANSIONS

 

 

17

COMPANY PROFILES

 

 

 

 

 

17.1

IN-DEPTH REVIEW OF COMPANIES, PRODUCTS, SERVICES, RECENT INITIATIVES, AND POSITIONING STRATEGIES IN THE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET LANDSCAPE

 

 

 

 

17.2

KEY PLAYERS

 

 

 

 

 

17.2.1

KONINKLIJKE PHILIPS N.V.

 

 

 

 

 

15.1.1.1

BUSINESS OVERVIEW

 

 

 

 

15.1.1.2

PRODUCTS/SOLUTIONS/SERVICES OFFERED

 

 

 

 

15.1.1.3

MNM VIEW

 

 

 

17.2.2

MICROSOFT CORPORATION

 

 

 

 

17.2.3

SIEMENS HEALTHINEERS AG

 

 

 

 

17.2.4

NVIDIA CORPORATION

 

 

 

 

17.2.5

EPIC SYSTEMS CORPORATION

 

 

 

 

17.2.6

GE HEALTHCARE

 

 

 

 

17.2.7

MEDTRONIC

 

 

 

 

17.2.8

ORACLE

 

 

 

 

17.2.9

BENEVOLENTAI

 

 

 

 

17.2.10

MERATIVE

 

 

 

 

17.2.11

GOOGLE

 

 

 

 

17.2.12

JOHNSON & JOHNSON

 

 

 

 

17.2.13

AMAZON WEB SERVICES, INC.

 

 

 

 

17.2.14

SOPHIA GENETICS

 

 

 

 

17.2.15

COGNIZANT

 

 

 

 

17.2.16

TEMPUS

 

 

 

 

17.2.17

SOLVENTUM

 

 

 

 

17.2.18

ADA HEALTH GMBH

 

 

 

 

17.2.19

INFERMEDICA

 

 

 

 

17.2.20

VIZ.AI, INC.

 

 

 

17.3

OTHER PLAYERS

 

 

 

 

 

17.3.1

QURE.AI

 

 

 

 

17.3.3

ULTROMICS LIMITED.

 

 

 

 

17.3.4

OWKIN, INC

 

 

 

 

17.3.5

GLEAMER

 

 

18

RESEARCH METHODOLOGY

 

 

 

 

 

18.1

RESEARCH DATA

 

 

 

 

 

18.1.1

SECONDARY DATA

 

 

 

 

 

18.1.1.1

KEY DATA FROM SECONDARY SOURCES

 

 

 

18.1.2

PRIMARY DATA

 

 

 

 

 

18.1.2.1

KEY DATA FROM PRIMARY SOURCES

 

 

 

 

18.1.2.2

KEY PRIMARY PARTICIPANTS

 

 

 

 

18.1.2.3

BREAKDOWN OF PRIMARY INTERVIEWS

 

 

 

 

18.1.2.4

KEY INDUSTRY INSIGHTS

 

 

18.2

MARKET SIZE ESTIMATION

 

 

 

 

 

18.2.1

BOTTOM-UP APPROACH

 

 

 

 

18.2.2

TOP-DOWN APPROACH

 

 

 

 

18.2.3

BASE NUMBER CALCULATION

 

 

 

18.3

MARKET FORECAST APPROACH

 

 

 

 

 

18.3.1

SUPPLY SIDE

 

 

 

 

18.3.2

DEMAND SIDE

 

 

 

18.4

DATA TRIANGULATION

 

 

 

 

18.5

FACTOR ANALYSIS

 

 

 

 

18.6

RESEARCH ASSUMPTIONS

 

 

 

 

18.7

RESEARCH LIMITATIONS & RISK ASSESSMENT

 

 

 

 

19.1

DISCUSSION GUIDE

 

 

 

 

19.2

KNOWLEDGESTORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL

 

 

 

 

19.3

CUSTOMIZATION OPTIONS

 

 

 

 

19.4

RELATED REPORTS

 

 

 

 

19.5

AUTHOR DETAILS

 

 

 

link

Leave a Reply

Your email address will not be published. Required fields are marked *