Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353 (1965).
Google Scholar
Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986).
Google Scholar
Atanassov, K.T. On intuitionistic fuzzy sets theory. Springer 283 (2012).
Bouchon-Meunier, B. & Marsala, C. Entropy and monotonicity in artificial intelligence. Int. J. Approx. Reason. 124, 111–122 (2020).
Google Scholar
Rezvani, S. & Wang, X. Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines. Inf. Sci. 578, 659–682 (2021).
Google Scholar
Xiao, F. A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3980–3992 (2019).
Google Scholar
Xiao, F. GEJS: A generalized evidential divergence measure for multisource information fusion. IEEE Trans. Syst. Man Cybern. Syst. 53(4), 2246–2258 (2022).
Google Scholar
Djatna, T., Hardhienata, M. K. D. & Masruriyah, A. F. N. An intuitionistic fuzzy diagnosis analytics for stroke disease. J. Big Data 5, 1–14 (2018).
Google Scholar
Zhang, L., Zhan, J. & Yao, Y. Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problems. Inf. Sci. 517, 315–339 (2020).
Google Scholar
Kuo, R. J., Lin, T. C., Zulvia, F. E. & Tsai, C. Y. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Appl. Soft Comput. 67, 299–308 (2018).
Google Scholar
Yager, R.R. Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61 (2013).
Yager, R.R. Properties and applications of Pythagorean fuzzy sets. In Imprecision and Uncertainty in Information Representation and Processing: New Tools Based on Intuitionistic Fuzzy Sets and Generalized Nets 119–136 (2016).
Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).
Google Scholar
Abdullah, S., Al-Shomrani, M. M., Liu, P. & Ahmad, S. A new approach to three-way decision making based on fractional fuzzy decision-theoretical rough set. Int. J. Intell. Syst. 37(3), 2428–2457 (2022).
Google Scholar
Yang, Y., Chen, F., Lang, J., Chen, X. & Wang, J. Sliding mode control of persistent dwell-time switched systems with random data dropouts. Appl. Math. Comput. 400, 126087 (2021).
Google Scholar
Duan, Z., Ding, F., Liang, J. & Xiang, Z. Observer-based fault detection for continuous–discrete systems in TS fuzzy model. Nonlinear Anal. Hybrid Syst. 50, 101379 (2023).
Google Scholar
Diao, Y. & Zhang, Q. Optimization of management mode of small and medium sized enterprises based on decision tree model. J. Math. 2021(1), 2815086 (2021).
Google Scholar
Yang, C., Li, F., Kong, Q., Chen, X. & Wang, J. Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme. Appl. Math. Comput. 389, 125562 (2021).
Google Scholar
Xing, R., Xiao, M., Zhang, Y. & Qiu, J. Stability and Hopf bifurcation analysis of an (n+ m)-neuron double-ring neural network model with multiple time delays. J. Syst. Sci. Complexity 35(1), 159–178 (2022).
Google Scholar
Jia, T., Chen, X., He, L., Zhao, F. & Qiu, J. Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application. Fractal Fract. 6(9), 502 (2022).
Google Scholar
Yu, Z., Zhao, F., Ding, S. & Chen, X. Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains. Appl. Math. Comput. 417, 126784 (2022).
Google Scholar
Zhang, N., Qi, W., Pang, G., Cheng, J. & Shi, K. Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks. Appl. Math. Comput. 427, 127153 (2022).
Google Scholar
Sun, Q., Ren, J. & Zhao, F. Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal. Appl. Math. Comput. 435, 127479 (2022).
Google Scholar
Duan, Z. X., Liang, J. L. & Xiang, Z. R. H∞ control for continuous-discrete systems in TS fuzzy model with finite frequency specifications. Discrete Contin. Dyn. Syst. S. 64(1), 1–18 (2022).
Google Scholar
Wang, H., Chen, X. & Wang, J. H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism. Appl. Math. Comput. 412, 126474 (2022).
Google Scholar
Huang, B., Miao, J. and Li, Q., A Vetoed Multi-objective Grey Target Decision Model with Application in Supplier Choice. Journal of Grey System 34(4), (2022).
Xu, Y., Liu, Y., Ruan, Q. & Lou, J. Data-driven optimal tracking control of switched linear systems. Nonlinear Anal. Hybrid Syst. 49, 101355 (2023).
Google Scholar
Hadzikadunic, A., Stevic, Z., Badi, I. & Roso, V. Evaluating the logistics performance index of European Union Countries: An integrated multi-criteria decision-making approach utilizing the Bonferroni Operator. Int. J. Knowl. Innov. Stud. 1(1), 44–59 (2023).
Google Scholar
Riaz, M. & Farid, H. M. Enhancing green supply chain efficiency through linear Diophantine fuzzy soft-max aggregation operators. J. Ind. Intell. 1(1), 8–29 (2023).
Google Scholar
Jana, C. & Pal, M. Interval-valued picture fuzzy uncertain linguistic dombi operators and their application in industrial fund selection. J. Ind. Intell. 1(2), 110–124 (2023).
Google Scholar
Khan, A. A. & Wang, L. Generalized and group-generalized parameter based Fermatean fuzzy aggregation operators with application to decision-making. Int. J. Knowl. Innov. Stud. 1(1), 10–29 (2023).
Google Scholar
Ahmed, M., Ashraf, S. & Mashat, D. S. Complex intuitionistic hesitant fuzzy aggregation information and their application in decision making problems. Acadlore Trans. Appl. Math. Stat. 2(1), 1–21 (2024).
Google Scholar
Rahman, K. & Muhammad, J. Enhanced decision-making through induced confidence-level complex polytopic fuzzy aggregation operators. Int. J. Knowl. Innov. Stud. 2(1), 11–18 (2024).
Google Scholar
Rahman, K. & Muhammad, J. Complex polytopic fuzzy model and their induced aggregation operators. Acadlore Trans. Appl. Math. Stat. 2(1), 42–51 (2024).
Google Scholar
Hadi, A., Khan, W. & Khan, A. A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators. Int. J. Intell. Syst. 36(7), 3464–3499 (2021).
Google Scholar
Ejegwa, P. A. Pythagorean fuzzy set and its application in career placements based on academic performance using max–min–max composition. Complex Intell. Syst. 5(2), 165–175 (2019).
Google Scholar
Tan, C., Yi, W. & Chen, X. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl. Soft Comput. 26, 325–349 (2015).
Google Scholar
Abdullah, S., Saifullah, & Almagrabi, A. O. An integrated group decision-making framework for the evaluation of artificial intelligence cloud platforms based on fractional fuzzy sets. Mathematics 11(21), 4428 (2023).
Liu, P. Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2013).
Google Scholar
Zhou, L., Zhao, X. & Wei, G. Hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 26(6), 2689–2699 (2014).
Google Scholar
Huang, J. Y. Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 27(1), 505–513 (2014).
Google Scholar
Wei, G., Alsaadi, F. E., Hayat, T. & Alsaedi, A. Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int. J. Fuzzy Syst. 20, 1–12 (2018).
Google Scholar
Waseem, N., Akram, M. & Alcantud, J. C. R. Multi-attribute decision-making based on m-polar fuzzy Hamacher aggregation operators. Symmetry 11(12), 1498 (2019).
Google Scholar
Akram, M. & Luqman, A. A new decision-making method based on bipolar neutrosophic directed hypergraphs. J. Appl. Math. Comput. 57, 547–575 (2018).
Google Scholar
Zavadskas, E. K., Turskis, Z., Antucheviciene, J. & Zakarevicius, A. Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika 122(6), 3–6 (2012).
Google Scholar
Mardani, A. et al. A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Appl. Soft Comput. 57, 265–292 (2017).
Google Scholar
Bali, V., Bali, S., Gaur, D., Rani, S. & Kumar, R. Commercial-off-the-shelf vendor selection: A multi-criteria decision-making approach using intuitionistic fuzzy sets and TOPSIS. Oper. Res. Eng. Sci. Theory Appl. 6(2) (2023).
Luo, X. et al. Multi-criteria decision-making of manufacturing resources allocation for complex product system based on intuitionistic fuzzy information entropy and TOPSIS. Complex Intell. Syst. 9(5), 5013–5032 (2023).
Google Scholar
Zhang, X. & Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014).
Google Scholar
Więckowski, J., Kizielewicz, B. & Sałabun, W. Handling decision-making in Intuitionistic Fuzzy environment: PyIFDM package. SoftwareX 22, 101344 (2023).
Google Scholar
Rani, P. et al. A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean. Prod. 238, 117936 (2019).
Google Scholar
Keshavarz Ghorabaee, M., Zavadskas, E.K., Olfat, L. & Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26(3), 435–451 (2015).
Ghorabaee, M. K., Zavadskas, E. K., Amiri, M. & Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. Control 11(3), 358–371 (2016).
Google Scholar
Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M. & Oztaysi, B. Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. J. Environ. Eng. Landsc. Manag. 25(1), 1–12 (2017).
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K. & Turskis, Z. Multi-criteria group decision-making using an extended EDAS method with interval type-2 fuzzy sets (2017).
Ecer, F. Third-party logistics (3PLs) provider selection via Fuzzy AHP and EDAS integrated model. Technol. Econ. Dev. Econ. 24(2), 615–634 (2018).
Google Scholar
Feng, X., Wei, C. & Liu, Q. EDAS method for extended hesitant fuzzy linguistic multi-criteria decision making. Int. J. Fuzzy Syst. 20, 2470–2483 (2018).
Google Scholar
Ilieva, G. Group decision analysis algorithms with EDAS for interval fuzzy sets. Cybern. Inf. Technol. 18(2), 51–64 (2018).
Google Scholar
Karaşan, A. & Kahraman, C. A novel interval-valued neutrosophic EDAS method: prioritization of the United Nations national sustainable development goals. Soft Comput. 22, 4891–4906 (2018).
Google Scholar
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z. & Antucheviciene, J. A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods. Econ. Comput. Econ. Cybern. Stud. Res. 52(3), 27–40 (2018).
Google Scholar
Terano, T., Asai, K. & Sugeno, M. Fuzzy systems theory and its applications (Academic Press Professional, 1992).
Google Scholar
Yuehong, Y. I., Zeng, Y., Chen, X. & Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 1, 3–13 (2016).
Google Scholar
Kumar, R., & Rajasekaran, M. P. An IoT based patient monitoring system using raspberry Pi. In 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16) 1–4 (2016).
Zanella, A., Bui, N., Castellani, A., Vangelista, L. & Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014).
Google Scholar
Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gen. Comput. Syst. 29(7), 1645–1660 (2013).
Google Scholar
Al-Adhab, A., Altmimi, H., Alhawashi, M., Alabduljabbar, H., Harrathi, F., & ALmubarek, H. IoT for remote elderly patient care based on Fuzzy logic. In 2016 International Symposium on Networks, Computers and Communications (ISNCC) 1–5 (2016).
Santamaria, A.F., Raimondo, P., De Rango, F., & Serianni, A. A two stages fuzzy logic approach for Internet of Things (IoT) wearable devices. In 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) 1–6 (2016).
Kumar, P. M., Lokesh, S., Varatharajan, R., Babu, G. C. & Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gen. Comput. Syst. 86, 527–534 (2018).
Google Scholar
Kolli, S., Patro, P., Sharma, R., & Sharma, A., Classification and Diagnosis of Heart Diseases Using Fuzzy Logic Based on IoT. In Advances in Fuzzy Based Internet of Medical Things (IoMT) 149–162 (2024).
Alam, T. M. et al. Disease diagnosis system using IoT empowered with fuzzy inference system. Comput. Mater. Contin. 70, 5305–5319 (2022).
Nagayo, A. M., Al Ajmi, M. Z. K., Guduri, N. R. K., & AlBuradai, F. S. H. IoT-based telemedicine health monitoring system with a fuzzy inference-based medical decision support module for clinical risk evaluation. In Proceedings of Third International Conference on Advances in Computer Engineering and Communication Systems: ICACECS 2022 313–336 (2023).
Ali, F. et al. Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Comput. Commun. 119, 138–155 (2018).
Google Scholar
Khan, M. N. U. et al. Fuzzy-based efficient healthcare data collection and analysis mechanism using edge nodes in the IoMT. Sensors 23(18), 7799 (2023).
Google Scholar
Shynu, P. G., Menon, V. G., Kumar, R. L., Kadry, S. & Nam, Y. Blockchain-based secure healthcare application for diabetic-cardio disease prediction in fog computing. IEEE Access 9, 45706–45720 (2021).
Google Scholar
Satpathy, S., Mohan, P., Das, S. & Debbarma, S. A new healthcare diagnosis system using an IoT-based fuzzy classifier with FPGA. J. Supercomput. 76, 5849–5861 (2020).
Google Scholar
Marshall, A. I. et al. Developing a Thai national critical care allocation guideline during the COVID-19 pandemic: A rapid review and stakeholder consultation. Health Res. Policy Syst. 19, 1–15 (2021).
Google Scholar
Vasquez, A., Monica Huerta, R., Clotet, R., González, G., Sagbay, D., Rivas, & Pirrone, J. Intelligent system for identification of patients in healthcare. In World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada, 1449–1452 (2015) (Springer International Publishing, 2015).
Andrew, J. et al. Blockchain for healthcare systems: Architecture, security challenges, trends and future directions. J. Netw. Comput. Appl. 215, 103633 (2023).
Google Scholar
Mendel, J. M. & Bonissone, P. P. Critical thinking about explainable AI (XAI) for rule-based fuzzy systems. IEEE Trans. Fuzzy Syst. 29(12), 3579–3593 (2021).
Google Scholar
Stanujkić, D. & Karabašević, D. An extension of the WASPAS method for decision-making problems with intuitionistic fuzzy numbers: a case of website evaluation. Oper. Res. Eng. Sci.: Theory Appl. 1(1), 29–39 (2018).
Peng, X. & Yuan, H. Fundamental properties of Pythagorean fuzzy aggregation operators. Fund. Inform. 147(4), 415–446 (2016).
Google Scholar
Khan, F. M. & Ahmad, W. Fermatean fuzzy weighted geometric aggregation operator in multiple attribute group decision-making problems. Matematika 38(1), 33–51 (2022).
Google Scholar
Rahim, M. et al. Multi-criteria group decision-making based on dombi aggregation operators under p, q-quasirung orthopair fuzzy sets. J. Intell. Fuzzy Syst. 46(1), 53–74 (2024).
Google Scholar
Zhao, Z. et al. Quasirung orthopair fuzzy linguistic sets and their application to multi criteria decision making. Sci. Rep. 14(1), 25513 (2024).
Google Scholar
link