A novel IoT-based approach using fractional fuzzy Hamacher aggregation operators application in revolutionizing healthcare selection

A novel IoT-based approach using fractional fuzzy Hamacher aggregation operators application in revolutionizing healthcare selection

  • Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353 (1965).

    Article 
    MATH 

    Google Scholar 

  • Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986).

    Article 
    MATH 

    Google Scholar 

  • Atanassov, K.T. On intuitionistic fuzzy sets theory. Springer 283 (2012).

  • Bouchon-Meunier, B. & Marsala, C. Entropy and monotonicity in artificial intelligence. Int. J. Approx. Reason. 124, 111–122 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Rezvani, S. & Wang, X. Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines. Inf. Sci. 578, 659–682 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Xiao, F. A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3980–3992 (2019).

    Article 
    MATH 

    Google Scholar 

  • Xiao, F. GEJS: A generalized evidential divergence measure for multisource information fusion. IEEE Trans. Syst. Man Cybern. Syst. 53(4), 2246–2258 (2022).

    Article 
    MATH 

    Google Scholar 

  • Djatna, T., Hardhienata, M. K. D. & Masruriyah, A. F. N. An intuitionistic fuzzy diagnosis analytics for stroke disease. J. Big Data 5, 1–14 (2018).

    Article 

    Google Scholar 

  • Zhang, L., Zhan, J. & Yao, Y. Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problems. Inf. Sci. 517, 315–339 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Kuo, R. J., Lin, T. C., Zulvia, F. E. & Tsai, C. Y. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Appl. Soft Comput. 67, 299–308 (2018).

    Article 
    MATH 

    Google Scholar 

  • Yager, R.R. Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61 (2013).

  • Yager, R.R. Properties and applications of Pythagorean fuzzy sets. In Imprecision and Uncertainty in Information Representation and Processing: New Tools Based on Intuitionistic Fuzzy Sets and Generalized Nets 119–136 (2016).

  • Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).

    Article 
    MATH 

    Google Scholar 

  • Abdullah, S., Al-Shomrani, M. M., Liu, P. & Ahmad, S. A new approach to three-way decision making based on fractional fuzzy decision-theoretical rough set. Int. J. Intell. Syst. 37(3), 2428–2457 (2022).

    Article 
    MATH 

    Google Scholar 

  • Yang, Y., Chen, F., Lang, J., Chen, X. & Wang, J. Sliding mode control of persistent dwell-time switched systems with random data dropouts. Appl. Math. Comput. 400, 126087 (2021).

    MathSciNet 
    MATH 

    Google Scholar 

  • Duan, Z., Ding, F., Liang, J. & Xiang, Z. Observer-based fault detection for continuous–discrete systems in TS fuzzy model. Nonlinear Anal. Hybrid Syst. 50, 101379 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Diao, Y. & Zhang, Q. Optimization of management mode of small and medium sized enterprises based on decision tree model. J. Math. 2021(1), 2815086 (2021).

    MATH 

    Google Scholar 

  • Yang, C., Li, F., Kong, Q., Chen, X. & Wang, J. Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme. Appl. Math. Comput. 389, 125562 (2021).

    MathSciNet 
    MATH 

    Google Scholar 

  • Xing, R., Xiao, M., Zhang, Y. & Qiu, J. Stability and Hopf bifurcation analysis of an (n+ m)-neuron double-ring neural network model with multiple time delays. J. Syst. Sci. Complexity 35(1), 159–178 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Jia, T., Chen, X., He, L., Zhao, F. & Qiu, J. Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application. Fractal Fract. 6(9), 502 (2022).

    Article 
    MATH 

    Google Scholar 

  • Yu, Z., Zhao, F., Ding, S. & Chen, X. Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains. Appl. Math. Comput. 417, 126784 (2022).

    MathSciNet 
    MATH 

    Google Scholar 

  • Zhang, N., Qi, W., Pang, G., Cheng, J. & Shi, K. Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks. Appl. Math. Comput. 427, 127153 (2022).

    MathSciNet 
    MATH 

    Google Scholar 

  • Sun, Q., Ren, J. & Zhao, F. Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal. Appl. Math. Comput. 435, 127479 (2022).

    MathSciNet 
    MATH 

    Google Scholar 

  • Duan, Z. X., Liang, J. L. & Xiang, Z. R. H∞ control for continuous-discrete systems in TS fuzzy model with finite frequency specifications. Discrete Contin. Dyn. Syst. S. 64(1), 1–18 (2022).

    MATH 

    Google Scholar 

  • Wang, H., Chen, X. & Wang, J. H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism. Appl. Math. Comput. 412, 126474 (2022).

    MathSciNet 
    MATH 

    Google Scholar 

  • Huang, B., Miao, J. and Li, Q., A Vetoed Multi-objective Grey Target Decision Model with Application in Supplier Choice. Journal of Grey System 34(4), (2022).

  • Xu, Y., Liu, Y., Ruan, Q. & Lou, J. Data-driven optimal tracking control of switched linear systems. Nonlinear Anal. Hybrid Syst. 49, 101355 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Hadzikadunic, A., Stevic, Z., Badi, I. & Roso, V. Evaluating the logistics performance index of European Union Countries: An integrated multi-criteria decision-making approach utilizing the Bonferroni Operator. Int. J. Knowl. Innov. Stud. 1(1), 44–59 (2023).

    Article 

    Google Scholar 

  • Riaz, M. & Farid, H. M. Enhancing green supply chain efficiency through linear Diophantine fuzzy soft-max aggregation operators. J. Ind. Intell. 1(1), 8–29 (2023).

    MATH 

    Google Scholar 

  • Jana, C. & Pal, M. Interval-valued picture fuzzy uncertain linguistic dombi operators and their application in industrial fund selection. J. Ind. Intell. 1(2), 110–124 (2023).

    MATH 

    Google Scholar 

  • Khan, A. A. & Wang, L. Generalized and group-generalized parameter based Fermatean fuzzy aggregation operators with application to decision-making. Int. J. Knowl. Innov. Stud. 1(1), 10–29 (2023).

    Article 
    MATH 

    Google Scholar 

  • Ahmed, M., Ashraf, S. & Mashat, D. S. Complex intuitionistic hesitant fuzzy aggregation information and their application in decision making problems. Acadlore Trans. Appl. Math. Stat. 2(1), 1–21 (2024).

    Article 
    MATH 

    Google Scholar 

  • Rahman, K. & Muhammad, J. Enhanced decision-making through induced confidence-level complex polytopic fuzzy aggregation operators. Int. J. Knowl. Innov. Stud. 2(1), 11–18 (2024).

    Article 
    MATH 

    Google Scholar 

  • Rahman, K. & Muhammad, J. Complex polytopic fuzzy model and their induced aggregation operators. Acadlore Trans. Appl. Math. Stat. 2(1), 42–51 (2024).

    Article 
    MATH 

    Google Scholar 

  • Hadi, A., Khan, W. & Khan, A. A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators. Int. J. Intell. Syst. 36(7), 3464–3499 (2021).

    Article 
    MATH 

    Google Scholar 

  • Ejegwa, P. A. Pythagorean fuzzy set and its application in career placements based on academic performance using max–min–max composition. Complex Intell. Syst. 5(2), 165–175 (2019).

    Article 
    MATH 

    Google Scholar 

  • Tan, C., Yi, W. & Chen, X. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl. Soft Comput. 26, 325–349 (2015).

    Article 
    MATH 

    Google Scholar 

  • Abdullah, S., Saifullah, & Almagrabi, A. O. An integrated group decision-making framework for the evaluation of artificial intelligence cloud platforms based on fractional fuzzy sets. Mathematics 11(21), 4428 (2023).

  • Liu, P. Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2013).

    Article 
    MATH 

    Google Scholar 

  • Zhou, L., Zhao, X. & Wei, G. Hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 26(6), 2689–2699 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Huang, J. Y. Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 27(1), 505–513 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Wei, G., Alsaadi, F. E., Hayat, T. & Alsaedi, A. Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int. J. Fuzzy Syst. 20, 1–12 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Waseem, N., Akram, M. & Alcantud, J. C. R. Multi-attribute decision-making based on m-polar fuzzy Hamacher aggregation operators. Symmetry 11(12), 1498 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Akram, M. & Luqman, A. A new decision-making method based on bipolar neutrosophic directed hypergraphs. J. Appl. Math. Comput. 57, 547–575 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J. & Zakarevicius, A. Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika 122(6), 3–6 (2012).

    Article 
    MATH 

    Google Scholar 

  • Mardani, A. et al. A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Appl. Soft Comput. 57, 265–292 (2017).

    Article 
    MATH 

    Google Scholar 

  • Bali, V., Bali, S., Gaur, D., Rani, S. & Kumar, R. Commercial-off-the-shelf vendor selection: A multi-criteria decision-making approach using intuitionistic fuzzy sets and TOPSIS. Oper. Res. Eng. Sci. Theory Appl. 6(2) (2023).

  • Luo, X. et al. Multi-criteria decision-making of manufacturing resources allocation for complex product system based on intuitionistic fuzzy information entropy and TOPSIS. Complex Intell. Syst. 9(5), 5013–5032 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhang, X. & Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014).

    Article 
    MATH 

    Google Scholar 

  • Więckowski, J., Kizielewicz, B. & Sałabun, W. Handling decision-making in Intuitionistic Fuzzy environment: PyIFDM package. SoftwareX 22, 101344 (2023).

    Article 
    MATH 

    Google Scholar 

  • Rani, P. et al. A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean. Prod. 238, 117936 (2019).

    Article 
    MATH 

    Google Scholar 

  • Keshavarz Ghorabaee, M., Zavadskas, E.K., Olfat, L. & Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26(3), 435–451 (2015).

  • Ghorabaee, M. K., Zavadskas, E. K., Amiri, M. & Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. Control 11(3), 358–371 (2016).

    Article 
    MATH 

    Google Scholar 

  • Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M. & Oztaysi, B. Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. J. Environ. Eng. Landsc. Manag. 25(1), 1–12 (2017).

  • Ghorabaee, M. K., Amiri, M., Zavadskas, E. K. & Turskis, Z. Multi-criteria group decision-making using an extended EDAS method with interval type-2 fuzzy sets (2017).

  • Ecer, F. Third-party logistics (3PLs) provider selection via Fuzzy AHP and EDAS integrated model. Technol. Econ. Dev. Econ. 24(2), 615–634 (2018).

    Article 
    MATH 

    Google Scholar 

  • Feng, X., Wei, C. & Liu, Q. EDAS method for extended hesitant fuzzy linguistic multi-criteria decision making. Int. J. Fuzzy Syst. 20, 2470–2483 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Ilieva, G. Group decision analysis algorithms with EDAS for interval fuzzy sets. Cybern. Inf. Technol. 18(2), 51–64 (2018).

    MathSciNet 
    MATH 

    Google Scholar 

  • Karaşan, A. & Kahraman, C. A novel interval-valued neutrosophic EDAS method: prioritization of the United Nations national sustainable development goals. Soft Comput. 22, 4891–4906 (2018).

    Article 
    MATH 

    Google Scholar 

  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z. & Antucheviciene, J. A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods. Econ. Comput. Econ. Cybern. Stud. Res. 52(3), 27–40 (2018).

    MATH 

    Google Scholar 

  • Terano, T., Asai, K. & Sugeno, M. Fuzzy systems theory and its applications (Academic Press Professional, 1992).

    MATH 

    Google Scholar 

  • Yuehong, Y. I., Zeng, Y., Chen, X. & Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 1, 3–13 (2016).

    MATH 

    Google Scholar 

  • Kumar, R., & Rajasekaran, M. P. An IoT based patient monitoring system using raspberry Pi. In 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16) 1–4 (2016).

  • Zanella, A., Bui, N., Castellani, A., Vangelista, L. & Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014).

    Article 
    MATH 

    Google Scholar 

  • Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gen. Comput. Syst. 29(7), 1645–1660 (2013).

    Article 
    MATH 

    Google Scholar 

  • Al-Adhab, A., Altmimi, H., Alhawashi, M., Alabduljabbar, H., Harrathi, F., & ALmubarek, H. IoT for remote elderly patient care based on Fuzzy logic. In 2016 International Symposium on Networks, Computers and Communications (ISNCC) 1–5 (2016).

  • Santamaria, A.F., Raimondo, P., De Rango, F., & Serianni, A. A two stages fuzzy logic approach for Internet of Things (IoT) wearable devices. In 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) 1–6 (2016).

  • Kumar, P. M., Lokesh, S., Varatharajan, R., Babu, G. C. & Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gen. Comput. Syst. 86, 527–534 (2018).

    Article 

    Google Scholar 

  • Kolli, S., Patro, P., Sharma, R., & Sharma, A., Classification and Diagnosis of Heart Diseases Using Fuzzy Logic Based on IoT. In Advances in Fuzzy Based Internet of Medical Things (IoMT) 149–162 (2024).

  • Alam, T. M. et al. Disease diagnosis system using IoT empowered with fuzzy inference system. Comput. Mater. Contin. 70, 5305–5319 (2022).

    Google Scholar 

  • Nagayo, A. M., Al Ajmi, M. Z. K., Guduri, N. R. K., & AlBuradai, F. S. H. IoT-based telemedicine health monitoring system with a fuzzy inference-based medical decision support module for clinical risk evaluation. In Proceedings of Third International Conference on Advances in Computer Engineering and Communication Systems: ICACECS 2022 313–336 (2023).

  • Ali, F. et al. Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Comput. Commun. 119, 138–155 (2018).

    Article 
    MATH 

    Google Scholar 

  • Khan, M. N. U. et al. Fuzzy-based efficient healthcare data collection and analysis mechanism using edge nodes in the IoMT. Sensors 23(18), 7799 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shynu, P. G., Menon, V. G., Kumar, R. L., Kadry, S. & Nam, Y. Blockchain-based secure healthcare application for diabetic-cardio disease prediction in fog computing. IEEE Access 9, 45706–45720 (2021).

    Article 

    Google Scholar 

  • Satpathy, S., Mohan, P., Das, S. & Debbarma, S. A new healthcare diagnosis system using an IoT-based fuzzy classifier with FPGA. J. Supercomput. 76, 5849–5861 (2020).

    Article 

    Google Scholar 

  • Marshall, A. I. et al. Developing a Thai national critical care allocation guideline during the COVID-19 pandemic: A rapid review and stakeholder consultation. Health Res. Policy Syst. 19, 1–15 (2021).

    Article 

    Google Scholar 

  • Vasquez, A., Monica Huerta, R., Clotet, R., González, G., Sagbay, D., Rivas, & Pirrone, J. Intelligent system for identification of patients in healthcare. In World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada, 1449–1452 (2015) (Springer International Publishing, 2015).

  • Andrew, J. et al. Blockchain for healthcare systems: Architecture, security challenges, trends and future directions. J. Netw. Comput. Appl. 215, 103633 (2023).

    Article 

    Google Scholar 

  • Mendel, J. M. & Bonissone, P. P. Critical thinking about explainable AI (XAI) for rule-based fuzzy systems. IEEE Trans. Fuzzy Syst. 29(12), 3579–3593 (2021).

    Article 
    MATH 

    Google Scholar 

  • Stanujkić, D. & Karabašević, D. An extension of the WASPAS method for decision-making problems with intuitionistic fuzzy numbers: a case of website evaluation. Oper. Res. Eng. Sci.: Theory Appl. 1(1), 29–39 (2018).

  • Peng, X. & Yuan, H. Fundamental properties of Pythagorean fuzzy aggregation operators. Fund. Inform. 147(4), 415–446 (2016).

    MathSciNet 
    MATH 

    Google Scholar 

  • Khan, F. M. & Ahmad, W. Fermatean fuzzy weighted geometric aggregation operator in multiple attribute group decision-making problems. Matematika 38(1), 33–51 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Rahim, M. et al. Multi-criteria group decision-making based on dombi aggregation operators under p, q-quasirung orthopair fuzzy sets. J. Intell. Fuzzy Syst. 46(1), 53–74 (2024).

    Article 

    Google Scholar 

  • Zhao, Z. et al. Quasirung orthopair fuzzy linguistic sets and their application to multi criteria decision making. Sci. Rep. 14(1), 25513 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *